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The idea of nondissipative, persistent currents in mesoscopic metallic or semiconducting
rings and cyclinders appears counterintuitive, because it contradicts our experience with
currents in macroscopic metals. On the other hand such orbital currents are well known
properties of atoms. A comparative study of nondissipative ring currents in different
finite quantum systems is therefore of interest. In this paper the properties of atoms,
mesoscopic metallic or semiconducting rings and cylinders and elongated molecules
called carbon nanotubes are dicussed and compared.
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1. INTRODUCTION

It is well known (Hund, 1938) that in small structures with discrete energy
levels currents can flow in thermal equilibrium. These currents are flowing along
closed orbits, they are frictionless, and there is no Joule heating associated with
them. The magnetic moments associated with them can be paramagnetic or dia-
magnetic and can be quite large. Such orbital persistent currents run e.g. in atoms,
molecules, mesoscopic metallic or semiconducting rings or cylinders and carbon
nanotubes. A comparative discussion of these currents in different small entities
is therefore of interest and will be given below.

One should stress and important difference between small, finite systems and
the macroscopic ones. In a normal large conductor the initial ring currents would
die down quickly due to Ohmic resistance. In small systems with discrete energy
levels at temperaturesT for whichkT is smaller than quantum size energy gap10,
the scattering to excited states is hampered and it is the reason of the persistency
of the current. As10 decreases with increasing the smaple size and tends to zero
in thermodynamical limit, the properties of small systems discussed below are
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absent in macroscopic samples. We shall ignore an electron spin in the following,
because the incorporation of spin does not change the discussion essentially. We
also assume that mesoscopic systems are made from a very clean material (ballistic
regime).

2. PERSISTENT, ORBITAL CURRENTS IN ATOMS

Nondissipative orbital currents and the associated magnetic moments are well
known properties of atoms with incomplete p, d, and f shells (l = 1, 2, 3,l is the
orbital quantum number). The many-electron ground state is built by occupying
single electron states with finite azimuthal quantum numbersm,−l ≤ m≤ l .

To characterize the stationary states of an atom it is not enough to give the
probability density (Ginter, 1979)

% ≡ |9(r )|2, (1)

one has also to consider the current densityEj (r ).
In the presence of the magnetic fieldEB( EB = rot EA) parallel to thez axis the

formula for Ej (r ) reads

Ej (r ) = ehi

2me
(9∗Egrad9 −9Egrad9∗)− e2 EA

me
|9|2. (2)

Let us discuss at first the current density in the absence of the magnetic field.
For real9, Ej (r ) = 0, however for complex9 it can be nonzero. If we take wave
functions with finitem

9nlm = fnl(r, θ ) e−imϕ (3)

we obtain the nonzero current density

Ej nlm(r ) = jnlm(r )Êeϕ , (4)

whereÊeϕ is the unit vector in theϕ direction,

jnlm(r ) = eh%nlm(r )

me

√
r 2− z2

m, (5)

where%nlm is given by (1). We see that each state withm 6= 0 carries the finite
“spontaneous” currentInlm encircling thez axis.

Inlm =
∫

S

Ej nlm d ES. (6)

By “spontaneous” we mean a current which flows without a support of any mag-
netic or electric field. The total current atB = 0 of such a many electron system
follows from the appropriate superposition of occupied single electron eigenstates
(e.g. according to the Hund’s rule in atoms). In atoms with open p, d, or f shells such
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currents are often nonzero even in the ground state and their density is enormous—
it is of the order ofj ∼ 1012 A/cm2. The energy difference from the ground state
to the first excited state is, in atoms, of the order of 1–10 eV so these currents are
persistent at ambient temperatures. In atoms with filled shells a full cancellation
of “spontaneous” currents occurs.

The magnetic moment of a given state is

Eµ = 1

2

∫
Er × Ej (Er ) d3Er . (7)

AssumingA = 0 and inserting (2) into Eq. (7) we get a nonzero orbital magnetic
moments for states with nonzero “spontaneous” currents i.e. withm 6= 0,

Eµ = µmÊz, µm = −µBm. (8)

whereµB = |eh/2me|. The total orbital magnetic moment (called sometimes per-
manent magnetic moment) equals

µ =
∑
mocc

µm, (9)

where summation goes over all occupiedm states for a givenl . The magnetic
moment of such atoms amounts to a fewµB. Atoms with filled shells do not have
permanent magnetic moments.

For A 6= 0 the diamagnetic currentjd is induced

jd = − e2

me
A|9|2. (10)

These diamagnetic currents are of the order ofI ∼ 10−10 A for B = 1 T.
Thus, in the presence of the magnetic field, the magnitude of the total current

and of the orbital magnetic moment changes. It is easy to check that, due to the
small radius of the atom, these changes remain very small; they are of the order of
10−4 for the magnetic fieldB = 1 T in an atomicp state.

In atoms with “spontaneous” currents the interaction between electrons in
them-th states leads to an energy gap that stabilizes the current carrying ground
state against transitions to other configurations. The interaction is via the Coulomb
repulsione2/4πε0r , which acts over distances of the order of the screening length
ds, ds is of the order of a fewÅ. The gain of energy with respect to the exited
configurations consists in minimizing the Coulomb repulsion by occupying states
with maximumm, consistent with the Pauli principle (Hund’s second rule). It leads
to an energy gap of the order of 1–10 eV. The corresponding transition temperature
to the current carrying ground state is of the order 104–105 K, far above the melting
temperature of solids. Therefore the current carrying state cannot be destroyed by
simply increasing the temperature.
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3. PERSISTENT, ORBITAL CURRENTS IN MESOSCOPIC RINGS
AND CYLINDERS

Let us consider now the quasi 1D mesoscopic ring. The kinetic energy of an
electron encircling the closed orbit of radiusR in the presence of the magnetic
field B perpendicular to the plane of the orbit is quantized (Cheunget al., 1988)

Em = h2

2meR2

(
m− φ

φ0

)2

, (11)

whereφ = BπR2, m= 0, ±1, ±2, . . . , is the orbital quantum number for the
electron going around the ring or cylinder circumference,φ0 = h/e= 4.14×
10−7 Gscm2, φ0 is the quantum flux. For mesoscopic quasi 1D ring withN electrons
mmaxÀ 1(mmax= mF ' N/2À 1), mF is the azimutal quantum number at the
Fermi Surface (FS) (for atomsmmax= l = 1, 2, 3).

We see that a quantum size energy gap10 exists at the FS,10 = h2N/2meR2

We find10 ∼ 270 K for R∼ 400Å and10 ∼ 11 K for R∼ 1µm.
Each electron occupying a state withm 6= 0 carries a finite current

Im(φ) = ∂Em

∂φ
= eh

2πR2me

(
m− φ

φ0

)
. (12)

with a current density

j (r ) = eh%

meR

(
m− φ

φ0

)
, (13)

where% is the electron density. Forφ = 0 we find a “spontaneous” current con-
nected with energy levels withm 6= 0, Im = ehm/2πmeR2.

The formula for the total currents is

I (φ, T) =
∑

m

Im fFD(T, φ), (14)

where fFD(T, φ) is the Fermi–Dirac distribution function.
ForT = 0 only the states up to±mF are occupied. The currents from occupied

m levels atφ = 0 have a strong tendency to cancel and the total current depends
on the number of electrons (the summation goes over all occupied states).

If the number of electrons in quasi 1D ring is even, then the last level below
a FS is occupied by a single electron and we get a “spontaneous” current

I ≡ I0 = ehmF

2πmeR2
= ehN

4πmeR2
. (15)

This current has a smaller current density than in atoms. For 1D ring withR=
400Å, j ∼ 1010 A/cm2, whereas forR= 1µm, j ∼ 108 A/cm2.

In mesoscopic 1D rings with odd number of electrons the “spontaneous”
current is zero due to the total cancelation of currents from±m states.
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In the presence of the magnetic field (B 6= 0) the system reacts with the
diamagnetic current. For rings with an even number of particlesN we get (Cheung
et al., 1988)

I = I0

(
sgnφ − 2

φ

φ0

)
, φ ∈ (−φ0, φ0), (16)

wheresgnφ is 1 for positiveφ and−1 for negativeφ, whereas for rings with odd
number of particlesN,

I = −2I0
φ

φ0
, φ ∈

(
−φ0

2
,
φ0

2

)
. (17)

The current amplitude decreases with increasingR. We find I0 ∼ 10−6 A for
R= 400Å and I0 ∼ 10−8 A for R= 1µm.

The currents in mesoscopic rings are persistent atkT < 10, however at finite
T , the amplitude and the shape ofI (φ, T) changes. In particular the sharp peak at
φ = 0 in Eq. (16) is smeared into the broader one and the numerical calculations
(Cheunget al., 1988; Stebelskiet al., 1998) show that we obtain for smallφ a
paramagnetic current whose amplitude decreases with increasingT (see Fig. 1).
Such temperatures smearing of the “spontaneous” current is impossible in atoms
because of much larger energy gaps. Persistent currents in mesoscopic rings have
been detected in several experiments (Chandrasekharet al., 1991; Levyet al.,
1990; Maillyet al., 1993).

Each current loop is equivalent to the magnetic moment. The magnetic mo-
ment of a circular currentIm is

µm = ImπR2 = µB

(
m− φ

φ0

)
. (18)

It follows from the presented considerations that both in atoms and mesoscopic
rings the currents and the associated magnetic moments change with the magnetic
field. However, in atomsφ reachesφ0 only in a field of the order ofB ∼ 104 T. This
field is at least three orders of magnitude larger than practical laboratory fields.
Therefore, we haveφ ¿ φ0 for the atomic orbitals in real fields andφ/φ0 ∼ 10−4

for B ∼ 1 T. Thus in atoms the magnetic moment stays practically constant. On
the other hand in mesoscopic rings with e.g.R∼ 400 AA,φ becomes of the order
of φ0 at B = 2, 2 T and forR∼ 1 µm φ becomes of the order ofφ0 already at
B ∼ 13 Gs. It is therefore easy to shift the current from its zero field value. The
current is the periodic function ofφ/φ0 at accessible fieldsB < 10 T—this phe-
nomenon is caused by the Bohm–Aharonov effect. Thus the change of the magnetic
momentµ can be easily made of the order ofµB. Here lies an important qualitative
difference between atoms and mesoscopic rings to practical magnetic fields.

As we already stated in atoms the magnetic moment amounts to a fewµB. In
mesoscopic rings with “spontaneous” current the situation is different. The total
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Fig. 1. The graphical solution of the self-consistent equation for the current
for different temperatures. The nonzero crossings of the straight line with
the current–flux characteristic corresponding to spontaneous currents are
marked by open circles. The parameters of the cylinder are :R= 5×
103 Å, lengthle = 104 Å, and thicknessd = 300Å.

magnetic moment in the absence of the magnetic field is large

µ =
∑
mocc

µm = N

2
µB. (19)

The 1D mesoscopic rings with last level below the FS doubly occupied are dia-
magnetic atφ < φ0/2, but the induced current is periodic inφ/φ0 and makes para-
magnetic jumps atφ = mφ0/2. We have a diamagnetic current with amplitude of
the order ofI ∼ 10−6 A for R= 400Å and I ∼ 10−8 A for R= 1µm. Thus, we
see that the magnitude of diamagnetic currents is quite larger in mesoscopic rings
than in atoms.

In mesoscopic metallic and semiconducting quasi 1D rings the Coulomb
interaction does not influence persistent currents in the ballistic regime (Avishai
and Braverman, 1995). One can study then the influence of the magnetostatic
(current–current) interaction. This interaction, being very weak, is negligible in a
single 1D ring. However, if we construct a system made of a set of concentric quasi
1D rings in the form of a torus or a cylinder, then the interaction of currents from
different rings (channels) stabilizes the current carrying ground state (Stebelski
et al., 1998; Wohllebenet al., 1991). The current–current interaction when taken
in the self-consistent mean field approximation results (Lisowskiet al., 1988) in
the magnetic fluxφI = α I , whereα is the self-inductance of the system. Thus the
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Fig. 2. The graphical solution of the self-consistent equation for the current for
different temperatures. The nonzero crossings of the straight line with the current–
flux characteristic corresponding to flux trapped are marked by open circles. The
parameters of the cylinder are :R= 3185Å, lengthle = 4× 104 Å, and thickness
d = 120Å.

total flux, which drives the current, is

φ = φe+ α I (φ, T), (20)

φe is the external flux,I (φ, T) is a periodic function ofφ and its amplitude de-
creases with increasingT . The spontaneous current solution can be obtained by
solving atφe = 0 the self-consistent equation for the current

I (φ, T) = φ − φe

α
. (21)

We get a finite spontaneous current when the amplitude ofI (φ, T) is large.
In Fig. 1 we show the spontaneous current solution for mesoscopic cylinder

exhibiting a paramagnetic reaction to smallφ.
The transition temperature to the state with spontaneous current is of the order

of 2 K, it is thus possible to reach this state by reducing the temperature from above
to belowTc.

In Fig. 2, we show the graphical solution of the self-consistent Eq. (21) at
φe = 0 for mesoscopic cylinder exhibiting the diamagnetic reaction to smallφ

(Lisowski, 2000; Stebelskiet al., 1998). The self-sustaining solutions marked by
open circles are equivalent to flux trapping.

In general, the magnitude of persistent current for mesoscopic hollow cylinder
depends on the shape of the FS. For spherical FS the current is weak (Cheung
et al., 1988; Stebelskiet al., 1998; Wohllebenet al., 1991), whereas its amplitude
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increases with increasing the curvature of the FS being the strongest for the flat
FS. The shape of the FS depends on the symmetry of the crystal and on the band
filling. Thus, only in systems with FS having large flat parts, spontaneous currents
can occur.

The presence of the magnetostatic interaction is also reflected in the energy
gap1 ≡ EmF+1 − EmF . By making use of Eqs. (11) and (20) one finds

1 = 10

(
1− 2

φe

φ0
+ 2

α|I (φ, T)|
φ0

)
. (22)

We see that1 contains the term1d

1d = 10
α|I (φ, T)|

φ0
, (23)

which is a dynamic part of the energy gap and has to be calculated in a self-
consistent way.

The ground state of the system with “spontaneous” currents has a Zeeman
degeneracy. Therefore, in thermal equilibrium atφe = 0, the expectation value of
this current or of the respective magnetic moment is zero if the relaxation time
for transitions between the states+µ and−µ is short compared to the time scale
of the measurement. This situation applies for atoms with “spontaneous” currents
in a dilute gas at finiteT and for 1D mesoscopic rings. However, the relaxation
time increases exponentially with the number of interacting entities. Therefore, in
mesoscopic rings or cylinders of finite thickness with a large number of channels
the relaxation time can become much longer than the time of the experiment. The
current and the magnetization are then truly spontaneous i.e. finite and in one
direction in zero external field.

Mesoscopic cylinders made of a normal metal or semiconductor can be ob-
tained e.g. by beam lithography. Such clean samples and of the required geometry
are rather difficult to obtain.

4. PERSISTENT, ORBITAL CURRENTS IN CARBON NANOTUBES

Recently a new exiting material that forms small hollow cylindrical structures
has been discovered (Iijima, 1991). These are carbon nanotubes (CN) that can be
considered as sheets of graphite with a hexagonal lattice that have been rolled up
into a tube. It turns out that 2D graphite layers are inherently unstable in the planar
configurations if the number of atoms is below a certain limit; they then tend to
form cage clusters such as fullerens or CN. CN are large molecules of diameter
of several nanometers and length of about 1–10µm. Their electronic properties
depend sensitively on diameter and the rolling angle and slight differences in these
parameters cause a shift from a metallic to semiconducting behavior (Dresselhaus
et al., 2001).
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Fig. 3. Different types of carbon nanotubes: (a) armchair, (b) zigzag, and (c) chiral

It is remarkable that similarly shaped molecules consisting of only one ele-
ment (carbon) may have very different electronic behavior. In general we distin-
guish three types of CN: armchair, zigzag, and chiral (see Fig. 3).

In a sheet of graphite, each carbon atom is very strongly bonded to three other
atoms (σ bonds) and this gives CN the exeptional strengh. A fourth electron is free
to move in aπ band and is responsible for the conductivity.

CN can be grown in different forms:

(a) Single-wall carbon nanotubes (SWNT) which in only one atom thick with
a diameter between 4̊A and 18Å,

(b) Multiwall carbon nanotubes (MWNT) consisting of several concetric-
tubes nested inside each other with outer diameter 100–1000Å,

(c) Tori, and
(d) Springs.

In a normal metallic cylinders all electrons that contribute to conduction
belong to a single parabolic band. Therefore left and right moving electrons can
be easily scattered fromkF to−kF because the symmetries of the wave functions
are the same.

The band structure of CN is entirely different. The two bands that cross
close to the Fermi Surface are linear and have different symmetries. One band is
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constructed from molecular bonding states (Goldhaber-Gordon and Goldhaber-
Gordon, 2001), the other from antibonding states, so the wave functions of left-
and right-moving electrons are very different on an atomic scale. This has an effect
on electron behavior: to switch its direction an electron must also switch from a
bonding to an antibonding state (or vice versa). This restriction supresses changes
in direction so an electron in a metallic CN tends to move persistently in one
direction. This results in exeptional ballistic transport properties and elastic mean
free paths of 10µm or more in CN. Such long mean free paths are very difficult
to obtain in rings and cylinders made of a normal metal or a semiconductor.

The magnetic field corresponding toφ0 is H = 1400 T for nanotube of radius
R= 10 Å (far beyond the accecible value) andH = 8 T for R= 130Å. Thus,
only in large CN withR≥ 100Å, the periodicity inφ0 of persistent current and
of the magnetic moment (Bohm–Aharonov effect) can be observed. The Bohm–
Aharonov effect being a hallmark of coherent transport has been recently observed
(Bachtoldet al., 1999) by measuring the resistance along the multiwall nanotube
in a parallel magnetic field.

The periodic boundary conditions in the circumferential direction give quan-
tized currents in parallel magnetic field (Dresselhauset al., 2001)

Im = eh

2πmeR2

(
m− φ

φ0
− γ

3

)
, (24)

wherem= 0,±1,±2, . . . , γ = 0 for metallic,γ = ±1 for semiconducting CN.
Thus persistent nondissipative currents can flow in such structures atkT < 1,1
is the energy gap,1 = δa/√3R where a is the lattice constant,δ is the transfer
integral between the neighboringπ orbitals (Ajiki and Ando, 1993). We find
1 ∼ 5000 K for R∼ 10 Å and1 ∼ 370 K for R∼ 130 Å. Persistent currents
are paramagnetic for metallic and diamagnetic for semiconducting CN at lowφ

and has been recently observed (Tsebroet al., 1999). The calculations show that
contrary to mesoscopic metallic cylinders the magnetic moment is independent of
R for R > 10 Å (Ajiki and Ando, 1993).

The energy spectrum of CN looks like a double crown (Dresselhauset al.,
2001) and in the ground state (EF = 0 at the half filling) only the lower one
is occupied. A very interesting feature of the energy spectrum is that the FS is
limited to six points at the peaks of the crown—it has important influence on the
conducting properties of CN.

Pesistent current obtained in this case for the nanotube with e.g. the length
le = 173Å and the radiusR= 5.485Å has the amplitudeI0 ∼ 1.29× 10−4 A
(Szopaet al., 2002). By hole doping we can lower the FS and change its shape what
leads to the change of persistent current amplitude. The most favorable situation
is for the shift1EF = −3 eV for zigzag nanotube, where the FS has a shape
of a hexagon with large flat parts. The current’s amplitude is then∼ 25 times
higher than the current at half filling,I0 ∼ 3× 10−3 Å (Szopaet al., 2002). For
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a zigzag nanotube of the type (14, 0), the current density can reach then the value
j ∼ 4× 1010 A/cm2. It has also been shown that for hole doped armchair CN we
do not get an enhancement of the current.

The large amplitude of persistent currents raises the possibility of getting
self-sustaining currents which produce the magnetic flux capable to maintain them-
selves even in the absence of extrenal magnetic field. It could take place in MWNT
which consists of a set of concentric tubes nested inside each other if all the tubes
would be of the same kind. The currents from different walls would then superpose
producing large internal flux to sustain the current. However, in MWNT produced,
nowadays different tubes have in general different electric and magnetic behavior,
but there is a possibility that MWNT having the desired structure will be fabricated
in the future.

Finally, we can discuss the possibility of a dynamic gap in CN. The possibility
of pair correlations in molecules having conductingπ electrons in the presence of
theσ -skeleton has been discussed in the literature (Kresin, 1967). The attraction
betweenπ electrons may be primarily due to the interaction with the vibrational
degrees of freedom and it leads to the formation of the dynamic energy gap. CN,
being the elongated molecules have the desired structure and such interactions
may lead to superconducting correlations. First reports on superconductivity in
CN have been recently published (Kociaket al., 2001; Tanget al., 2001; Zhao and
Wang, 2001).

5. CONCLUSIONS

We have discussed some aspects of quantum coherence—nondissipative or—
bital currents—in finite quantum systems. Quantum coherence is related to both
small size of the sample and to electron correlations coming from Coulomb or
magnetostatic interactions.

We have shown that there is no fundamental difference between persistent
orbital currents in atoms, mesoscopic rings, cylinders, and carbon nanotubes, but
there are some important qualitative and quantitative distinctions which have been
discussed in this paper.

Mesoscopic rings and cylinders and especially carbon nanotubes are of great
interest because of their possible technological applications in nanoelectronics and
in quantum computers.
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